CHEMICAL & BIOLOGICAL TRANSDUCERS

EE312, Prof. Greg Kovacs

Stanford University

CHEMICAL TRANSDUCERS

- pH sensors
- ISFETs/ChemFETs for specific ions
- Conductivity-based gas sensors
- Microelectrodes
- Biosensors (molecular)
- Cell-based biosensors
- Separation systems (see Fluidics)

CHEMICAL TRANSDUCER CONCEPTS

- Electrochemical transduction (redox/voltammetry, conductivity, impedance spectroscopy, etc.) makes use of electrically-controlled reactions at electrode/electrolyte interfaces.
- ISFET/ChemFET transduction relies on direct modulation of active region of FET-like devices by charges at "gate" surface.
- Conductivity modulation in semiconductor films is a direct effect on resistance of two-terminal sensors.
- Biomolecular interactions (nucleic acids, immunoglobulins, etc.) are highly specific binding interactions that can be detected by changes in charge, mass, etc.
- Cell-based biosensors use whole, living cells as part of the transduction mechanism.

CHEMIRESISTORS

- Some materials change their bulk resistance when exposed to certain chemicals (e.g. Cu in phthalocyanine as CCl₄ sensor).
- A major problem is cross-sensitivity (lack of selectivity), which some try to overcome by combining outputs of several overlapping sensors through neural nets, etc. ("electronic nose").

CHEMICAPACITORS

- Chemicals entering a dielectric modulate the capacitance by varying ε_r , physically varying the gap, or other means.
- An example is polyphenylacetylene (PPA), a polymer that can be spun on from a benzene (dangerous) solution and is sensitive to CO, CO_2 , N_2 , and CH_4 (again, poor selectivity is a problem).
- Another example is polyetherurethane (PUT) with gas sensitivities in the -5 to +12 ppm/ppm.

http://panametrics.com/div_pci/

CALORIMETRIC CHEMICAL SENSORS

Reference: Zanini, M., Visser, J. H., Rimai, L., Soltis, R. E., Kovalchuck, A., Hoffman, D. W., Logothetis, E. M., Bonne, U., Brewer, L., Bynum, O. W., and Richard, M. A., "Fabrication and Properties of a Si-Based High Sensitivity Microcalorimetric Gas Sensor," Proceedings of the 1994 Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, June 13 - 16, 1994, pp. 176 - 178.

- Heat of reaction is used to detect chemicals (catalyst leads to combustion and extra heat released).
- Works well for hydrocarbons, etc., (typical 0 4000 ppm).
- Poor selectivity, but can be used in arrays with neural networks or other combinatorial approaches.

FLOW-THROUGH CALORIMETER

Reference: Zieren, M., and Köhler, J. M., "A Micro-Fluid Channel Calorimeter Using BiSb/Sb Thin Film Thermopiles," Proceedings of Transducers '97, the 1997 International Conference on Solid-State Sensors and Actuators, Chicago, IL, June 16 - 19, 1997, vol. 1, pp. 539 - 542.

Source: Zieren, M., and Köhler, J. M., "A Micro-Fluid Channel Calorimeter Using BiSb/Sb Thin Film Thermopiles," Proceedings of Transducers '97, the 1997 International Conference on Solid-State Sensors and Actuators, Chicago, IL, June 16 - 19, 1997, vol. 1, pp. 539 - 542.

METAL OXIDE GAS SENSORS

- Direct modulation of resistance of (generally heated) metal oxides by gases adsorbing at the surface.
- Example: SnO₂, oxygen raises the resistance (removes electrons) and combustible gases lower the resistance (remove adsorbed oxygen, liberating electrons).
- Generally, a catalyst is used on the surface to promote the reactions.
- The overall thickness of the film should be as small as possible to maximize sensitivity (only the surface material is affected and is in parallel with the bulk resistance).

$$H_2 + O^- \qquad H_2O + e^-$$

$$O_2 + 2e^- \qquad 2 O^-$$

EXAMPLE METAL OXIDE SENSORS

Semiconductor	Suggested Additives	Gas to Be Detected	Reference
BaTiO ₃ /CuO	La ₂ O ₃ , CaCO ₃	CO ₂	Haeusler and Meyer (1995)
SnO_2	Pt + Sb	СО	Morrison (1994)
SnO_2	Pt	alcohols	Morrison (1994)
SnO_2	$Sb_2O_3 + Au$	H_2, O_2, H_2S	Morrison (1994)
SnO_2	CuO	H_2S	Tamaki, et al. (1997)
ZnO	V, Mo	halogenated hydrocarbons	Morrison (1994)
WO ₃	Pt	NH ₃	Morrison (1994)
Fe ₂ O ₃	Ti-doped + Au	СО	Morrison (1994)
Ga ₂ O ₃	Au	СО	Schwebel, et al. (1997)
MoO ₃	none	NO ₂ , CO	Guidi, et al. (1997)
In ₂ O ₃	none	O ₃ (ozone)	Wlodarski, et al. (1997)

BASIC VERSUS CATALYZED REACTIONS: REDUCING THE ACTIVATION ENERGY FOR COMBUSTION

BASIC REACTIONS

CATALYZED REACTIONS

$$H_2$$

$$H_2 + 2Pt$$

$$2(Pt - H)$$

$$O_2$$

$$O_2 + 2Pt$$

$$2(Pt - O)$$

$$2H + O$$

$$H_2O$$

$$2(Pt - H) + (Pt - O)$$

$$3Pt + H_2O$$

Reference: Chang, S.-C., and Hicks, D. B., "Tin Oxide Microsensors on Thin Silicon Membranes," Record of the IEEE Solid-State Sensors Workshop, 1986 (no page numbers used).

- SnO₂, as shown in these CO sensor designs, can be sputter-deposited.
- Thermally-isolated membranes and other structures permit low-power operation at the elevated temperatures required (300°C for SnO₂).

Reference: Demarne, V. and Grisel A., "An Integrated Low-Power Thin-Film CO Sensor on Silicon," Sensors and Actuators, vol. 13, 1988, pp. 301-314.

- Following a standard CMOS (MOSIS) process, EDP etching was used to undercut the sensor platforms.
- Reactive sputtering with heating of the platforms at the same time was used to deposit SnO_2 .
- Responses down to 1 ms and thermal resistancs up to 8,000 K/W have been achieved.

Source: Suehle, J. S., Cavicchi, R. E., Gaitan, M., and Semancik, S., "Tin Oxide Gas Sensor Fabricated Using CMOS Micro-Hotplates and In-Situ Processing," IEEE Electron Device Letters, vol. 14, no. 3, Mar. 1993, pp. 118 - 120.

POST-CMOS GAS SENSOR

G. Kovacs © 2000

COMBINED GAS AND TEMPERATURE SENSOR: CHEMICAL AND THERMAL

Source: Johnson, C. L., Wise, K. D., and Schwank, J. W., "A Thin-Film Gas Detector for Semiconductor Process Gases," Digest of the International Electron Devices Meeting (IEDM), Washington, DC, Dec. 1988, p. 662.

FIGHTING THE SELECTIVITY PROBLEM: ARRAY GAS SENSORS

Array of three types of relatively nonselective catalytic metal gas sensors operated at three different temperatures each to improve selectivity.

Source: Fluitman, J. H., van den Berg, A., and Lemmerink, T. S., "Micromechanical Components for μTAS," Micro Total Analysis Systems, Proceedings of μTAS '94 Workshop, Twente, Netherlands, Nov. 21 - 22, 1994, pp. 73 - 83.

PLATINIDE HYDROGEN SENSORS

• Pd-gate FET operates due to adsorpition of H_2 (in some cases H_2S and NH_3) onto Pd, dissociation into H atoms and rapid diffusion of H atoms through Pd to adsorb at the metal/oxide interface, changing the work function, seen as a threshold voltage shift,

$$V_{T} = \frac{-\mu N}{0}$$

$$\mu = \text{dipole moment of interfacial hydrogen}$$

$$N = \text{density of adsorption sites}$$

$$= \text{fraction of surface sites covered, } 0 < < 1$$

$$_{o} = \text{dielectric permittivity of free space}$$

• Other gases that release hydrogen (H₂S, NH₃, etc.) can also be detected.

Reference: Lundstrom, I., Shivaraman, S., Svensson, C., and Lundkvist, L., "Hydrogen Sensitive MOS Field-Effect Transistor," Applied Physics Letters, vol. 26, 1975, pp. 55 - 57.

ISFET/CHEMFET STRUCTURES

- The ISFET is essentially an "open-gate" MOSFET.
- Hydrogen ions react with surface SiO₂ to form SiOH₂⁺, functioning as a pH sensor.
- Non-specific adsorption can be a problem.

- The CHEMFET uses an additional organic layer (e.g. ion-selective) for more specific interactions.
- Screen printing or dip coating are often used to apply the layer(s).

References: Bergveld, P., "Future Applications of ISFETs," Sensors and Actuators, vol. B4, nos. 1 - 2, May 1991, pp. 125 - 133, and Madou, M. J., and Morrison, S. R., "Chemical Sensing with Solid State Devices," Academic Press, Inc., Boston, MA, 1989.

G. Koyacs © 2000

Source: Netter, F., "The CIBA Collection of Medical Illustrations: Volume 1, Nervous System, Part 1, Anatomy and Physiology," CIBA-GEIGY Corp., 1983.

G. Kovacs © 2000

ELECTROCHEMICAL TRANSDUCERS

- As opposed to electronic circuits, there are many more carriers (and they are roughly six order of magnitude lower mobility) in ionic solutions.
- A metal structure placed into an ionic solution, metal ions form due to oxidation, leaving behind electrons... eventually a space charge builds up and electrochemically opposes the oxidation reaction.

Carrier or Ion	Mobility, μ, in cm ² /(s•V)	
electron in Si	1.35 X 10 ³	
hole in Si	4.80 X 10 ²	
H ⁺ in H ₂ O	3.63 X 10 ⁻³	
OH- in H ₂ O	2.05 X 10 ⁻³	
Cl- in H ₂ O	7.91 X 10 ⁻⁴	
K+ in H ₂ O	7.62 X 10 ⁻⁴	
NH ₄ + in H ₂ O	7.61 X 10 ⁻⁴	
ClO ₄ - in H ₂ O	7.05 X 10 ⁻⁴	
Na+ in H ₂ O	5.19 X 10 ⁻⁴	
HCO ₃ - in H ₂ O	4.61 X10 ⁻⁴	
Li+ in H ₂ O	4.01 X 10 ⁻⁴	

NONLINEARITY OF ELECTRODES

- For large signals (large enough to carry out electrochemical reactions), electrodes are extremely nonlinear.
- The Butler-Volmer equation models its diode-like I-V characteristics.

$$\mathbf{J} = \mathbf{J}_{o} \quad e^{\frac{(1-)\mathbf{z}_{t}\mathbf{F}}{RT}} - e^{\frac{-\mathbf{z}_{t}\mathbf{F}}{RT}}$$

$$\mathbf{J} = \mathbf{J}_{o} \quad e^{\frac{\mathbf{q}\mathbf{V}}{kT}} - e^{\frac{-\mathbf{q}\mathbf{V}}{kT}}$$

$$V_{\rm T} = \frac{kT}{q} = \frac{RT}{F}$$

SENSING WITH ELECTRODES

- Sensing can be done potentiometrically or amperometrically.
- Potentiometry uses the characteristic potentials of reactions to identify them.
- The Nernst Equation gives the relationship between potential and concentrations of species. Example: pH with a metal oxide electrode:

 | PT | a | MeO(OH)| | PT | DECEMBER | D

electrode: $E = E^{\circ} + \frac{RT}{F} \ln \frac{a_{\text{MeO(OH)}}[\text{MeO(OH)}]}{a_{\text{MeO}_2}[\text{MeO}_2]} + \frac{RT}{F} \ln (a_{\text{H}^+})$ • Amperometry uses the limiting (maximum) current that can be

• Amperometry uses the limiting (maximum) current that can be carried by a reaction to measure the concentration of the rate limiting species using:

 $i_{L}(t) = nFAC\sqrt{\frac{D}{t}} + \frac{nFACD}{r}$

• The first term gives time domain info (Cottrell Equation) and the second gives the steady-state current.

MICROELECTRODE VOLTAMMETRY

- Thin-film iridium electrodes with mercury hemispheres allow preconcentration and stripping of heavy metal ions.
- Sensitivity down to below 1 PPB.
- An integrated potentiostat chip completed the two-chip sensor system and provided an 8-decade current input range.

Reference: Kounaves, S. P., Deng, W., Hallock, P. R., Kovacs, G. T. A., and Storment, C. W., "Iridium-Based Ultramicroelectrode Array Fabricated by Microlithography," Analytical Chemistry, vol. 66, 1994, pp. 418 - 423.

STRIPPING VOLTAMMETRY SYSTEM

Reay, R. J., Kounaves, S. P., and Kovacs, G. T. A., "An Integrated CMOS Potentiostat for Miniaturized Electroanalytical Instrumentation," Proceedings of the 1994 International Solid-State Circuits Conference, San Francisco, CA, Feb. 16 - 18, 1993, pp. 162 - 163.

Kovacs, G. T. A., Storment, C. W., and Kounaves, S. P., "Micromachined Heavy Metal Ion Sensor," Sensors and Actuators B: Chemical, vol. 23, no. 1, pp. 41 - 47.

CARBIDE-COATED ION SENSOR FOR PROCESS FLUIDS

Reference: Flannery, A. F., Mourlas, N. J., Storment, C. W., Tsai, S., Tan, S. H., Heck, J., Monk, D., Gogoi, B., and Kovacs, G. T. A., "PECVD Silicon Carbide as a Chemically Resistant Material for Micromachined Transducers," Sensors and Actuators A, vol. 70, nos. 1 - 2, Oct. 1998, pp. 48 - 55.

AMPEROMETRIC OXYGEN SENSOR (CLARK CELL)

Reference: Cobbold, R. S. C., "Transducers for Biomedical Measurements," John Wiley and Sons, New York, NY, 1974.

Miniaturized Clark Cell Oxygen Sensor

Courtesy G. McLaughlin, Stanford University.

CLARK CELL CALIBRATION RESULTS

CLARK CELL TIME RESPONSE

ACOUSTIC WAVE SENSORS

$$f = k f_o^2 \frac{m}{A}$$

Reference: Grate, J. W., Martin, S. J., and White, R. M., "Acoustic Wave Microsensors," Parts 1 and 2, Analytical Chemistry, vol. 65, 1993, pp. 940A - 948A and pp. 987A - 996A.

BIOMOLECULE-BASED SENSORS

Reference: Dewa, A. S., and Ko, W. H., "Biosensors," Chapter 9 in Semiconductor Sensors, S. M. Sze (ed.), John Wiley and Sons, Inc., New York, NY, 1994, pp. 415 - 472.

ENZYMES

Movie courtesy Prof. H. C. Heller, Stanford University.

Source: Purves, Orians, Heller, and Sadava, "Life: The Science of Biology," Sinauer Associates/W.H. Freeman & Co., New York, 1999.

Analyte	Enzyme	Sensed Species
Glucose	Glucose Oxidase	H ₂ O ₂ or O ₂
L-Amino Acids	L-Amino Acid Oxidase	H_2O_2
Alcohols	Alcohol Oxidase	O_2
Uric Acid	Uricase	O_2
Phosphate	Phosphatase/Glucose Oxidase	O_2

Source: Tsukuda, K., Miyahara, Y., Shibata, Y., and Miyagi, H., "An Integrated Micro Multi-Ion Sensor Using Platinum-Gate Field-Effect Transistors," Proceedings of Transducers '91, the 1991 International Conference on Solid-State Sensors and Actuators, San Francisco, CA, June 24 - 27, 1991, pp. 218 - 221.

MULTISENSOR ARRAY FOR BLOOD GASES

Includes pH, pCO₂ and PO₂ sensors.

Source: Arquint, P., van der Schoot, B. H., and de Rooij, N. F., "Combined Blood Gas Sensor for pO_2 , pCO_2 and pH," Micro Total Analysis Systems, Proceedings of μ TAS '94 Workshop, Twente, Netherlands, Nov. 21 - 22, 1994, pp. 191 - 194.

Goldberg, H. D., Brown, R. B., Liu, D. P., and Meyerhoff, M. E., "Screen Printing: A Technology for the Batch Fabrication of Integrated Chemical-Sensor Arrays," Sensors and Actuators B, vol. 21, 1994, pp. 171-183.

COMMERCIAL DEVICE

Sensor Chips

- Flow Channel

Calibrant Pouch

- Sample Entry Port

Courtesy Dr. Anca Varlan, I-Stat.

G. Kovacs © 2000

Courtesy Prof. H. C. Heller, Stanford University.

Source: Purves, Orians, Heller, and Sadava, "Life: The Science of Biology," Sinauer Associates/W.H. Freeman & Co., New York, 1999.

DNA molecules on a mica substrate, imaged using a scanning probe microscope.

Source: Moscow University, www.spm.genebee.msu.su/

EXAMPLE RECOGNITION MOLECULE: DNA

EXAMPLE RECOGNITION MOLECULE: ANTIBODIES

Courtesy Prof. H. C. Heller, Stanford University.

Source: Purves, Orians, Heller, and Sadava, "Life: The Science of Biology," Sinauer Associates/W.H. Freeman & Co., New York, 1999.

ANTIBODY-TO-pH TRANSDUCTION

Reference: Colapicchioni, C., Barbaro, A., Porcelli, F., and Giannini, I., "Immunoenzymatic Assay Using CHEMFET Devices," Sensors and Actuators, vol. B4, nos. 3 - 4, June 1991, pp. 245 - 250.

CMOS-COMPATIBLE BIOSENSOR PROCESS

- Goldberg, et al., (1994) demonstrated an approach to screen-printing biosensors on CMOS.
- Silver epoxy was used to couple between the CMOS metallization (Al) and ionophore-loaded polymer membranes.
- One design had serial interface, A/D, gain stage, band-gap reference, temperature sensor, K⁺, Ca²⁺, NH₄⁺ and pH sensors.

Reference: Goldberg, H. D., Brown, R. B., Liu, D. P., and Meyerhoff, M. E., "Screen Printing: A Technology for the Batch Fabrication of Integrated Chemical-Sensor Arrays," Sensors and Actuators B, vol. 21, 1994, pp. 171-183.

BIOLOGICAL TASTE SENSORS

Reference: Dodd, J., and Castellucci, V. F., "Smell and Taste: The Chemical Senses," Chapter 34 in "Principles of Neural Science," Kandel, E. R., Schwartz, J. H., and Jessell, T. M., [eds.], Third Edition, Elsevier Science Publishing Co., Inc., New York, NY, 1991, pp. 512 - 529.

Reference: Dodd, J., and Castellucci, V. F., "Smell and Taste: The Chemical Senses," Chapter 34 in "Principles of Neural Science," Kandel, E. R., Schwartz, J. H., and Jessell, T. M., [eds.], Third Edition, Elsevier Science Publishing Co., Inc., New York, NY, 1991, pp. 512 - 529.

BIOLOGICAL ODOR SENSORS

Reference: Dodd, J., and Castellucci, V. F., "Smell and Taste: The Chemical Senses," Chapter 34 in "Principles of Neural Science," Kandel, E. R., Schwartz, J. H., and Jessell, T. M., [eds.], Third Edition, Elsevier Science Publishing Co., Inc., New York, NY, 1991, pp. 512 - 529.

Source: Gosling, J. A., Harris, P. F., Humpherson, J. R., Whitmore, I., and Willan, P. L. T., "Atlas of Human Anatomy," J. B. Lippincott Co., Philadelphia, PA, 1985.

HYBRID BIOSENSORS

- This type of sensor makes use of whole, living cells as part of the transduction mechanism, taking advantage of very specific molecular sensors that have evolved in organisms.
- Can grow many types of cells directly on top of integrated circuits complete with arrays of thin-film electrodes.
- Requires suitable surfaces for cellular compatibility and resistance to corrosion/blockage of alkali ions.
- Can grow cells on such surfaces for many months.

HYBRID BIOSENSOR: MICROPHYSIOMETER

- Extracellular pH (indicator of metabolic state) is measured using light-addressing.
- A pulsed LED is used to generate electron-hole pairs in a silicon substrate containing cells in wells.
- The pH can be computed from the resulting AC signal, representing pH-induced changes in the SiO₂/electrolyte interface.
- This device is commercially available from Molecular Devices, Inc., Sunnyvale, CA.

Reference: Parce, J. W., Owicki, J. C., et al., "Detection of Cell-Affecting Agents with a Silicon Biosensor," Science, 246 (4927), 1989, pp. 243- 247.

Source: Parce, J. W., Owicki, J. C., Kersco, K. M., Sigal, G. B., Wada, H. G., Muir, V. C., Bousse, L. J., Ross, K. L., Sikic, B. I., and McConnell, H. M., "Detection of Cell-Affecting Agents with a Silicon Biosensor," Science, vol. 246, no. 4927, Oct. 13, 1989, pp. 243 - 247.

HYBRID BIOSENSOR EXAMPLE

Stanford Transducers Laboratory G. Kovacs © 2000

CELLS ON SURFACES

Movie courtesy Prof. H. C. Heller, Stanford University.

Source: Purves, Orians, Heller, and Sadava, "Life: The Science of Biology," Sinauer Associates/W.H. Freeman & Co., New York, 1999.

Courtesy Prof. H. C. Heller, Stanford University.

Source: Purves, Orians, Heller, and Sadava, "Life: The Science of Biology," Sinauer Associates/W.H. Freeman & Co., New York, 1999.

Source: Netter, F., "The CIBA Collection of Medical Illustrations: Volume 1, Nervous System, Part 1, Anatomy and Physiology," CIBA-GEIGY Corp., 1983.

G. Kovacs © 2000

18-CHANNEL CMOS FILTER/AMPLIFIER ARRAY CHIP

Fluid Well

Bond Wires

Dual-Inline Package

(Note: bond wire insulation not shown)

8-CHANNEL RECORDINGS FROM DORSAL ROOT GANGLION CELLS

200 μV

G. Kovacs © 2000

8-CHANNEL RECORDINGS FROM CHICK MYOCARDIAL CELLS

 $200 \ \mu V$

AP MODULATION WITH PHARMACEUTICALS / TOXINS

Reference: Borkholder, D. A., DeBusschere, B. D., and Kovacs, G. T. A., "An Approach to the Classification of Unknown Biological Agents with Cell Based Sensors," Proceedings of the Solid-State Sensor and Actuator Workshop, Hilton Head, South Carolina, June 8 - 11, 1998, pp. 178 - 182.

Before Experiment

After Experiment

NG108 MOTILITY: SINGLE-CELL

 $Courtesy\ Dr.\ D.\ Borkholder,\ Stanford\ University\ and\ Cepheid.$

INTEGRATED CELL CARTRIDGE ENABLES HAND-HELD BIOSENSOR

PROTOTYPE HAND-HELD BIOSENSOR

Removable flash memory cartridge (2MB) for data storage

LCD for system control and real time graphing of experimental data

Buttons for menu selections

"GUTS" OF THE INSTRUMENT

DIRECT NEURON-TO-FET COUPLING

Reference: Fromherz, P., Offenhäusser, A., Vetter, T., and Weis, J., "A Neuron-Silicon Junction: A Retzius Cell of the Leech on an Insulated-Gate Field Effect Transistor," Science, vol. 252, no. 5010, May 31, 1991, pp. 1290 - 1293.

CONTROLLED OUTGROWTH OF NEURONS

Courtesy Prof. G. Whitesides, Harvard University. Reference: Mrksich, M., and Whitesides, G. M., "Patterning Self-Assembled Monolayers Using Microcontact Printing: A New Technology for Biosensors?" TIBTECH, vol. 13, 1995, pp. 228 - 235.

Interdigitated 170 nm width ultramicroelectrode results for 28 hours of culture of fibroblasts under 1.5V, 5 MHz fields, showing cell "repulsion."

Source: Fuhr, G., and Wagner, B., "Electric Field Mediated Cell Manipulation, Characterization and Cultivation in Highly Conductive Media," Micro Total Analysis Systems, Proceedings of μ TAS '94 Workshop, Twente, Netherlands, Nov. 21 - 22, 1994, pp. 209 - 214

PRACTICAL ISSUES FOR CHEMICAL SENSORS

- Sensitivity
- Selectivity
- Repeatability
- Testing
- Calibration

PRACTICAL ISSUES FOR CHEMICAL SENSORS

- Sensitivity
- Selectivity
- Repeatability
- Testing
- Calibration

CHEMICAL ACTUATOR: REVERSIBLE ELECTROLYSIS

- Hamberg, et al. (1995) demonstrated a reversible electrolytic gas generation scheme using Cu and Pt electrodes and CuSO₄ solution.
- If the Pt is made anodic and the Cu cathodic, catalytic release of O_2 at the anode and Cu deposition at the cathode will occur.

(anode)
$$2\frac{1}{2}O$$
 $O_{2(g)} + 4H^{+} + 4e^{-}$ (cathode) $Cu^{2+} + 2e^{-}$ $Cu_{(s)}$ (overall reaction) $2\frac{1}{2}O + 2Cu^{2+}$ $O_{2(g)} + 4H^{+} + 2Cu_{(s)}$

- The reaction was carried out in a sealed, micromachined chamber with a corrugated silicon nitride membrane.
- Only 20mbar pressure for 1.5 µm deflections were possible over 1 minute, reversing in 5 minutes, with only 10µW power consumption.

Reference: Hamberg, M., Neagu, C., Gardeniers, J. G. E., Ijntema, D. J., and Elwenspoek, M., "An Electrochemical Micro Actuator," Proceedings of the IEEE Micro Electro Mechanical Systems, Workshop, Amsterdam, the Netherlands, February 2, 1995, p. 106-110.

Reference: Hamberg, M., Neagu, C., Gardeniers, J. G. E., Ijntema, D. J., and Elwenspoek, M., "An Electrochemical Micro Actuator," Proceedings of the IEEE Micro Electro Mechanical Systems, Workshop, Amsterdam, the Netherlands, February 2, 1995, p. 106-110.

POLYPYRROLE EXPANSION CHEMICAL ACTUATORS

- It is well known that conducting polymers of the polypyrrole (PPy) family can be grown electrochemically and are capable of significant (several percent) physical expansion when doped with a suitable molecule (e.g. dodecylbenzene sulfonate) and when cations such as Na are present.
- Smela, et al. (1995) demonstrated the electrically controlled expansion of PPy thin films that were doped in such a manner and fabricated as micro-hinges that, when contracted, would raise flaps of an inert, rigid, polymer (benzocyclobutene).
- When operated in an aqueous salt solution, the flaps could bend through nearly 90° within 0.5 10 seconds (depending on PPy thickness) when the voltage was raised from -1.0 to +0.35 V.
- They used selective removal of a Cr sticking layer to form regions of Au that were so weakly adherent to the underlying Si that the hinges self-released.

References: Smela, E., Inganäs, O., and Lundrström, I., "Differential Adhesion Method for Microstructure Release: An Alternative to the Sacrificial Layer, Proceedings of Transducers '95, Stockholm, Sweden, June 25 - 29, 1995, vol. 2, pp. 350 - 351.

Smela, E., Inganäs, O., and Lundrström, I., "Self-Opening and Closing Boxes and Other Micromachined Folding Structures," Proceedings of Transducers '95, Stockholm, Sweden, June 25 - 29, 1995, vol. 2, pp. 350 - 351.

References: Smela, E., Inganäs, O., and Lundrström, I., "Differential Adhesion Method for Microstructure Release: An Alternative to the Sacrificial Layer, Proceedings of Transducers '95, Stockholm, Sweden, June 25 - 29, 1995, vol. 2, pp. 350 - 351.

Smela, E., Inganäs, O., and Lundrström, I., "Self-Opening and Closing Boxes and Other Micromachined Folding Structures," Proceedings of Transducers '95, Stockholm, Sweden, June 25 - 29, 1995, vol. 2, pp. 350 - 351.

THIN-FILM BATTERIES

Reference: Bates, J. B., Gruzalski, G. R., Dudney, N. J., Luck, C. F., Yu, X.-H., Jones, S. D., "Rechargeable Thin-Film Lithium Microbatteries," Solid State Technology, vol. 36, no. 7, July 1993, pp. 59 - 64.

BIOLOGICAL TRANSDUCERS

- Neural interfaces
- Cultured tissue systems
- Others

BIOLOELECTRIC TRANSDUCER CONCEPTS RECAP

- Electrically active cells (neural, muscular, etc.) generate small currents in short "spikes" (action potentials) discussed already.
- These currents are due to ions (e.g. Na⁺, K⁺) moving across the cell membrane through protein channels.
- Extracellular recording from close proximity to cells can pick up these signals (≈ 100 $1000 \, \mu V$).
- Many thin-film electrode designs can be used, and they are generally simple to fabricate.

GENERIC MICROELECTRODE

- Electrode sizes can be comparable to neural cells or larger.
- •Nearly arbitrary geometries are possible.
- •Multiple electrode materials can be combined on a single array.

PENETRATING CORTICAL PROBES

Reference: Najafi, K., Wise, K. D., and Mochizuki, T., "A High-Yield IC-Compatible Multichannel Recording Array," IEEE Transactions on Electron Devices, vol. ED-32, no. 7, July 1985, pp. 1206 - 1211.

Source: Najafi, K., "Solid-State Microsensors for Cortical Nerve Recordings," IEEE Engineering in Medicine and Biology Magazine, vol. 13, no. 3, June/July 1994, pp. 375 - 387.

MICHIGAN CORTICAL PROBES

Courtesy Prof. K. Wise, University of Michigan.

Source: Hoogerwerf, A. C. and Wise, K. D., "A Three-Dimensional Microelectrode Array for Chronic Neural Recording," IEEE Transactions on Biomedical Engineering, vol. 41, no. 12, Dec. 1994, pp. 1136 - 1146.

Source: Hoogerwerf, A. C. and Wise, K. D., "A Three-Dimensional Microelectrode Array for Chronic Neural Recording," IEEE Transactions on Biomedical Engineering, vol. 41, no. 12, Dec. 1994, pp. 1136 - 1146.

MIGHIGAN MULTISITE NEUROSTIMULATOR PROBE

Najafi, K., "Solid-State Microsensors for Cortical Nerve Recordings," IEEE Engineering and Biology Magazine, June/July 1994, pp. 375 - 387.

UTAH PENETRATING ARRAYS

Courtesy Prof. R. Normann, University of Utah.

DRY-ETCHED CORTICAL PROBES

- Plasma etch defined probe shape
- Multiple thin-film iridium electrodes
- Separate 18-channel amplifier chip.

Reference: Kewley, D. T., Hills, M. D., Borkholder, D. A., Opris, I. E., Maluf, N. I., Storment, C. W., Bower, J. M., and Kovacs, G. T. A., "Plasma-Etched Neural Probes," Sensors and Actuators, vol. A58, no. 1, Jan. 1997, pp. 27 - 35.

Reference: Kewley, D. T., Hills, M. D., Borkholder, D. A., Opris, I. E., Maluf, N. I., Storment, C. W., Bower, J. M., and Kovacs, G. T. A., "Plasma-Etched Neural Probes," Proceedings of the Solid-State Sensor and Actuator Workshop, Hilton Head, South Carolina, June 3 - 6, 1996, pp. 266 - 271.

STANFORD/CALTECH NEURAL PROBES

COCHLEAR PROSTHESES

Courtesy Prof. R. White, Stanford University.

Courtesy Prof. R. White, Stanford University.

Courtesy Prof. R. White, Stanford University.

REGENERATION-TYPE ELECTRODE ARRAYS

Reference: Kovacs, G. T. A., Storment, C. W., Halks-Miller, M., Belczynski, C. R., Della Santina, C. C., Lewis, E. R., and Maluf, N. I., "Silicon-Substrate Microelectrode Arrays for Parallel Recording of Neural Activity in Peripheral and Cranial Nerves," IEEE Transactions on Biomedical Engineering, June 1994, vol. 41, no. 6, pp. 567 - 577.

Science of Biology," Sinauer Associates/W.H. Freeman & Co., New York, 1999. The action potential jumps quickly to the new node and... Point A Point B

Courtesy Prof. H. C. Heller, Stanford University.

Source: Purves, Orians, Heller, and Sadaya, "Life: The

Point B

UNMYELINATED

& MYELINATED

AXONS

Outside 0 K+ channel o PX0000000 Na+ channel Inside cell •

Time = 2

Axon

Point A

Time = 1

© 1998 Sinauer Associates, Inc. **G. Kovacs © 2000**

Point C

Point C

...continues from node to node.

@ 1998 Sinauer Associates, Inc.

Source: Darnell, J., Lodish, H., and Baltimore, D., "Molecular Cell Biology," Second Edition, Scientific American Books, W. H. Freeman and Co., New York, NY, 1991.

Courtesy Prof. H. C. Heller, Stanford University.

Source: Purves, Orians, Heller, and Sadava, "Life: The Science of Biology," Sinauer Associates/W.H. Freeman & Co., New York, 1999.

G. Kovacs © 2000

Courtesy Prof. J. Rosen, Dartmouth University.

Courtesy Prof. J. Rosen, Dartmouth University.

Courtesy Prof. J. Rosen, Dartmouth University.

Courtesy Prof. J. Rosen, Dartmouth University.

Reference: Kovacs, G. T.
A., Storment, C. W., HalksMiller, M., Belczynski, C.
R., Della Santina, C. C.,
Lewis, E. R., and Maluf, N.
I., "Silicon-Substrate
Microelectrode Arrays for
Parallel Recording of
Neural Activity in
Peripheral and Cranial
Nerves," IEEE Transactions
on Biomedical Engineering,
June 1994, vol. 41, no. 6, pp.
567 - 577.

Courtesy C. Della Santina, U.C. Berkeley.

Reference: Kovacs, G. T. A., Storment, C. W., Halks-Miller, M., Belczynski, C. R., Della Santina, C. C., Lewis, E. R., and Maluf, N. I., "Silicon-Substrate Microelectrode Arrays for Parallel Recording of Neural Activity in Peripheral and Cranial Nerves," IEEE Transactions on Biomedical Engineering, June 1994, vol. 41, no. 6, pp. 567 - 577.

NEURAL RECORDINGS FROM FROG AUDITORY NERVE USING REGENERATION ARRAY AND ACOUSTIC STIMULUS

Courtesy C. Della Santina, U.C. Berkeley.

BORON-DOPED REGENERATION ARRAYS

Courtesy Prof. K. Najafi, University of Michigan.

Source: Najafi, K., "Solid-State Microsensors for Cortical Nerve Recordings," IEEE Engineering and Biology Magazine, June/July 1994, pp. 375 - 387.

PACKAGING AND INTERCONNECT FOR NEURAL PROBES

ISSUES FOR BIOLOGICAL TRANSDUCERS

- Practicality
- Biocompatibility
- Bioresistance
- Packaging for implant
- Interconnects
- Telemetry